Mathematica code: Código: Rot80 = Table[ Table[ RotationTransform[a, {1, 1, 0}, {0, 0, 0}][Tuples[{-1, 1}, 3][[v]]], {v, 1, 8, 1}], {a, 0, 2 Pi, Pi/80}] Edge := {1, 2, 4, 3, 7, 8, 6, 5, 1, 3, 4, 8, 7, 5, 6, 2} CubeTrail[h_, op_, N_, s_, r_, z_, t_, PR_, IS_, C_] := Graphics[ Table[ Scale[ Translate[ {AbsoluteThickness[h], Opacity[op], If[C == 1, Black, White], Line[ Table[ {Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[1]], Rot80[[1 + Mod[t, 80]]][[Edge[[e]]]][[2]]}, {e, 1, 16, 1}]]}, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}], z^n, r{Cos[2 Pi*(n*t/80 + k)/N], Sin[2 Pi*(n*t/80 + k)/N]}], {k, 1, N, 1}, {n, 1, s, 1}], PlotRange -> PR, ImageSize -> 500, Background -> If[C == 0, Black, White]] Manipulate[P = {h, op, N, s, r, z, t, PR, IS, C}; CubeTrail[h, op, N, s, r, z, t, PR, 500, 0], {{h, 1}, 0, 20}, {op, 1, 0}, {{N, 4}, 1, 16, 1}, {s, 1, 100, 1}, {{r, 3.5}, 0, 10}, {z, 1, 0}, {{PR, 5}, 1, 5}, {C, 0, 1, 1}, {t, 0, 100, 1}] P ={1.5, 1, 4, 8, 3.8, 0.75, 0, 5, 500, 0} Manipulate[ CubeTrail[P[[1]],P[[2]],P[[3]],P[[4]],P[[5]],P[[6]],t,P[[8]],500,0], {t, 1, 80, 1}] ¿Sorprendente, no? y lo mejor es que hay muchos mas en esta página!